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Overview

I Motivation
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I State of research (empirical precipitation quantiles)

I Statistical artefact: sample size dependency

I Parametrical method for quantile estimation

I Fit distributions
I Simulations to quantify sample size effect
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Motivation: Flash floods

India, Indore, Patalpani waterfall

famous picnic spot 2011: Flash flood
small scale, sudden, dangerous (Boessenkool, 2013)
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Motivation: Flash floods

Open video in external viewer

Watch complete video on youtube
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



https://www.youtube.com/watch?v=O5SyBTy6j24


For once, we don’t complain about data shortage
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For once, we don’t complain about data shortage

Data: 60 years long time series of 14 stations across Germany
Summer data from May to September, 1951-2010

Figures here refer to Potsdam (52:23 ◦N, 13:04 ◦E, 81 m asl.)

Source: German Weather Service (DWD)

hourly rainfall depth: recorded by Hellmann gauges, resolution:
1/10 mm. Values below 0.5 mm/h were discarded, see thesis for details.

daily temperature average: computed from hourly measurements at
2 m above ground
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Logtransformation is the best thing since sliced bread
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Logtransformation is the best thing since sliced bread - Reason 1
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Logtransformation is the best thing since sliced bread - Reason 1

Open histogram animation in external viewer
credits: FFmpeg + R package animation (Yihui)
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http://ffmpeg.org/download.html
http://yihui.name/animation/


Logtransformation is the best thing since sliced bread - Reason 1

Precipitation [mm/h]  (logscaled)

0

100

200

300

400

500

600

0.5 1 2 5 10 20

Number of records per value group

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 5/14



Quantile explanation

Precipitation [mm/h]  (logscaled)

0

100

200

300

400

500

600

0.5 1 2 5 10 20

Number of records per value group

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 6/14



Quantile explanation

Precipitation [mm/h]  (logscaled)
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Can also be called percentile.
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Quantile explanation
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Quantile explanation
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Logtransformation is the best thing since sliced bread - Reason 2
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Logtransformation is the best thing since sliced bread - Reason 2

It’s the only way to compare rates of change.
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Logtransformation is the best thing since sliced bread - Reason 2
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Logtransformation is the best thing since sliced bread - Reason 2

Open scatterplot animation in external viewer
credits: FFmpeg + R package animation (Yihui)
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Logtransformation is the best thing since sliced bread - Reason 2
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High precipitation quantiles drop at high temperatures
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High precipitation quantiles drop at high temperatures
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VPsat: Clausius-Clapeyron governed saturated Vapor Pressure.

Assuming constant relative humidity, it is analogous to

atmospheric precipitable water content (max moisture content).

August-Roche-Magnus approximation:

VPsat = 6.1094 ∗ exp
(

17.625∗temp
temp+243.04

)
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Distribution (fitted to rainfall dataset)
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High precipitation quantiles drop at high temperatures
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Distribution (fitted to rainfall dataset)
Generate random samples of different sizes
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Distributions must be fitted carefully
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Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Empirical Probability Density (Histogram)

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

wak
wei
kap
pe3

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

wak
wei
kap
pe3

wak
wei
kap
pe3
ln3

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

wak
wei
kap
pe3

wak
wei
kap
pe3
ln3

wak
wei
kap
pe3
ln3
gno

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

wak
wei
kap
pe3

wak
wei
kap
pe3
ln3

wak
wei
kap
pe3
ln3
gno

wak
wei
kap
pe3
ln3
gno
gum

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

wak
wei
kap
pe3

wak
wei
kap
pe3
ln3

wak
wei
kap
pe3
ln3
gno

wak
wei
kap
pe3
ln3
gno
gum

wak
wei
kap
pe3
ln3
gno
gum
gev

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 1 2 5 10 20 50

Probability Density Function (PDF)

wak
wak
wei

wak
wei
kap

wak
wei
kap
pe3

wak
wei
kap
pe3
ln3

wak
wei
kap
pe3
ln3
gno

wak
wei
kap
pe3
ln3
gno
gum

wak
wei
kap
pe3
ln3
gno
gum
gev

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 9/14



Distributions must be fitted carefully

Precipitation  [mm/h]

0.00

0.02

0.04

0.06

0.08

5 10 20 50 100

wak
wei
kap
pe3
ln3
gno
gum
gev

Probability Density Function (PDF)

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 10/14



Distributions must be fitted carefully

Extreme value statistics to the rescue!
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Distributions must be fitted carefully
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Censored quantile: quantile of the highest values of a sample

(also called truncated quantile)

Probability value must be corrected:

Q0.95 of top 20 % describes Q0.99 of full sample.
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Distributions must be fitted carefully

Science should strive for reproducibility:
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R Code available on github.com/brry devtools::install github("brry/extremeStat")
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https://github.com/brry


Low sample size could explain quantile drop
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Parametric quantile:
quantile from distribution
fitted to sample
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That’s why you need an umbrella on hot days

precipitation intensity quantile drop at high temperatures
may be an effect of sample size

use parametrical quantiles for extreme rainfall intensity estimation

source code slides, references and materials: github.com/brry/prectemp

Image credits:
http://7-themes.com/7024707-child-with-umbrella.html

http://pngimg.com/download/494
http://dreamatico.com/data images/sun/sun-5.jpg

Thanks to many proofreaders
and my supervisors

open Master Thesis in external viewer
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Goodness of Fit
measured by RMSE of cumulated distribution function and ecdf
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RMSE: root of average of ( errors squared )
errors = line distances
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Random subsamples drawn from real data (observations)
Truncated parametric quantiles (fitted to top 20%) still depend (a little bit)
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parametric truncated quantiles applied to original Potsdam dataset
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PT relationships in literature
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simulations with other distributions
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cutoff effect
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gofprop effect
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No real temporal trend observed with empirical quantiles
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parametric Quantiles (Average of 3 closest dists)

1950 1960 1970 1980 1990 2000 2010

0

50

100

150

200

250

annual precipitation quantiles  [mm/h]

Q_0.9999
Q_0.99
Q_0.9

Boessenkool, 2015 Motivation, Data, Empirical q., Distributions, Sample size 22/14


	Introduction
	Motivation
	Data
	Logtransformation
	Quantile explanation
	Logtransform rates
	empirical Quantiles
	Distributions
	Sample Size
	Temperature dependence
	RMSE
	subsample realdata
	Application of parametric quantiles to original data
	PT relationships in literature
	simulations with other distributions
	cutoff effect
	gofprop effect
	trend

	fd@rm@0: 
	fd@rm@1: 
	fd@rm@2: 


